Перелом длинных трубчатых костей
Переломы – нарушение целостности кости с нарушением её анатомической формы, повреждением окружающих мягких тканей и утратой функции конечностей. Перелом образуется, когда сила травматического воздействия превышает эластичность костной ткани.
Чаще всего переломы возникают при непосредственном повреждении в результате ДТП, огнестрельных ранений или падений с высоты. Перелом происходит на месте или около точки воздействия, может возникать при непрямом воздействии сил (отрыв шероховатости большеберцовой кости, локтевого отростка и др.). К перелому может привести чрезмерное сокращение мышц или некоординируемое движение, снижение механической прочности кости в результате поражения её опухолью; болезнью, вызванной нарушением гормонального состояния организма или нарушением диеты.
Из-за таких нарушений даже незначительная травма может привести к перелому – патологические переломы.
Рис. 1. Остеопения. Рис. 2. Неоплазия.
Предрасполагающими факторами являются форма и положение кости, поэтому длинные трубчатые, относительно незащищённые кости (лучевая, локтевая, большеберцовая), более подвержены переломам по сравнению с короткими компактными костями запястья, заплюсны.
Классификация переломов
1.1 относительно анатомической локализации:
1.1.1. переломы проксимальной части
- суставные (требуют раннего оперативного вмешательства)
- эпифизарные
- в области ростковой зоны (метафизарные)
1.1.2. переломы диафиза
1.1.3. переломы дистальной части (аналогично проксимальной)
1.2 наличие внешней раны:
1.2.1. закрытые переломы, при которых поверхностные слои кожи остаются неповреждёнными
1.2.2. открытые переломы (три степени) — имеется связь между участком перелома и раной кожи
1.3 относительно степени повреждения кости:
1.3.1. полный перелом — целостность кости полностью нарушена; часто со смещением отломков
1.3.2. неполный перелом — целостность кости частично сохранена (например, перелом по типу «зелёной ветки» у молодых животных или трещины кости у взрослых)
1.4 относительно плоскости перелома:
1.4.1. поперечный
1.4.2. косой
1.4.3. спиральный
1.4.4. оскольчатый
1.4.5. двойной (множественный)
1.5 относительное смещение костных фрагментов:
1.5.1. отрывной перелом (авульсия)
1.5.2. вколоченный перелом
1.5.3. компрессионный перелом
1.5.4. вдавленный перелом
1.6 относительно стабильности перелома:
1.6.1. устойчивые переломы (поперечные, тупые /короткие/, косые, по типу «зелёной ветки»). Иногда требуется фиксация для предотвращения угловой деформации
1.6.2. неустойчивые переломы (косые, спиральные, оскольчатые). Необходима фиксация для сохранения длины кости и предотвращения угловой деформации
При лечении переломов важно соответствовать принципам АО (Ассоциация по изучению вопросов остеосинтеза):
- анатомическая репозиция (особенно важно при лечении внутрисуставных переломов)
- стабильная фиксация (использование накостного металлоостеосинтеза, спицевых или стержневых аппаратов внешней фиксации или комбинированных способов)
- бережное отношение с мягкими тканями, окружающими перелом — атравматичность (важно сохранить кровоснабжение костных отломков)
- ранняя активная мобилизация мышц (ранняя нагрузка и активные движения являются мощным естественным фактором, поддерживающим репаративный остеогенез на высоком уровне).
Источник
По степени и характеру повреждения различают неполные и полные переломы костей.
По анатомическим показателям переломы трубчатых костей подразделяют на эпифизарные, диафизарные и метафизарные.
В зависимости от направления линии излома к оси кости полные переломы делят на следующие формы: поперечную, косую, продольную, спиральную (винтообразную), зубчатую, вколоченную, оскольчатую, раздробленную, размозженную.
При постановке диагноза крайне важно всесторонне охарактеризовать повреждение с учетом следующих данных:
1) открытое или закрытое повреждение;
2) его характер;
3) какая ткань повреждена;
4) локализация повреждения;
5) имеющиеся расхождения и смещения отломков кости;
6) сопутствующие повреждения. Полнота и точность диагноза определяют надежную лечебную тактику.
Представленная классификация, на наш взгляд, наиболее рациональна и удобна в применении. Однако, в настоящее время во многих страна мира принята классификация, предложенная M. Muller (1993), которая включает все виды переломов и может быть основой для выбора метода хирургической коррекции и сравнения результатов лечения.
В зависимости от морфологической характеристики переломы каждого сегмента разделяются на типы, группы и подгруппы.
При диагностике перелома необходимо ответить на вопросы: к какому типу, группе, подгруппе он относится. Эти вопросы и три возможных ответа являются ключом классификации
Три типа отмечены буквами А, В, С, каждый тип разделяется на три группы: A1, А2, А3; В1, В2, В3; С1, С2, С3; каждая группа разделена на три подгруппы. Классификация составлена в порядке увеличения тяжести, трудности лечения и прогноза.
А = Простые переломы
А1 Простой спиральный
• подвертельной зоны
• средней зоны
• дистальной зоны
А2 Простой косой перелом (> 300)
• подвертельной зоны
• средней зоны
• дистальной зоны
А3 Простой поперечный перелом
• подвертельный зоны
• средней зоны
• дистальной зоны
В = Перелом с клиновидным отломком
В1 Перелом со спиральным клином
• подвертельной зоны
• средней зоны
• дистальной зоны
В2 Перелом со сгибательным клином
• подвертельной зоны
• средней зоны
• дистальной зоны
В3 Перелом с фрагментированным клином
• подвертельной зоны
• средней зоны
• дистальной зоны
С = Сложные переломы
С1 Сложный спиральный перелом
• с двумя промежуточными фрагментами
• с тремя промежуточными фрагментами
• с более чем тремя промежуточными фрагментами
С2 Сложный сегментарный перелом
• с одним промежуточным сегментарным фрагментом
• с одним промежуточным сегментарным фрагментом и одним дополнительным клиновидным отломком
• с двумя промежуточными сегментарными фрагментами
С3 Сложные неправильные переломы
• с двумя или тремя промежуточными фрагментами
• с ограниченной раздробленностью (< 5 см)
• с распространённой раздробленностью (> 5 см)
Определения:
Простой перелом: одиночная циркулярная линия перелома диафиза
• спиральный: в результате кручения
• косой: угол линии перелома и перпендикуляра к длинной оси кости равен или больше 300
• поперечный: угол линии перелома и перпендикуляра к длинной оси кости меньше 300
Клиновидный перелом: оскольчатый перелом диафиза с одним или более промежуточными фрагментами, при котором после репозиции имеется некоторый контакт между отломками
• спиральный: имеется осколок в виде «бабочки» или третий отломок перелома
• сгибательный: обычно вызывается прямым ударом
• фрагментированный: клиновидный перелом, при котором после репозиции сохраняется некоторый контакт между отломками
Сложный перелом: оскольчатый перелом с одним или более промежуточными фрагментами, при котором после репозиции отсутствует контакт между отломками
• спиральный: имеет множество обычно больших промежуточных осколков спиральной формы
• сегментарный: би- или трифокальный перелом
• иррегулярный: диафизарный перелом с большим количеством промежуточных фрагментов, не имеющих специфической формы, обычно сочетающийся с тяжёлыми разрушениями мягких тканей
Источник
Судебномедицинская экспертиза переломов длинных трубчатых костей занимает значительное место при исследовании трупов и освидетельствовании живых лиц.
Механизм переломов длинных трубчатых костей и особенности происходящих при них повреждений костной ткани были в основном изучены клиницистами. Однако в литературе не представляется возможным найти ответ на ряд важных с судебномедицинскои точки зрения вопросов, касающихся повреждения костей. Сюда относится определение по характеру и особенностям повреждений длинных трубчатых костей, с какой стороны был нанесен удар и каково было его направление. Вопрос этот имеет важное значение для органов суда и следствия, так как нередко установление истинного положения потерпевшего в момент травмы оказывается возможным только на основании данных судебномедицинской экспертизы.
Судебномедицинских работ, посвященных анализу переломов длинных трубчатых костей, возникших от действия твердых тупых предметов, в доступной нам литературе мы не встретили.
Мы сделали попытку определить признаки, позволяющие диагностировать направление удара по особенностям и характеру повреждений длинных трубчатых костей.
Для изучения особенностей таких повреждений при ударе твердым тупым предметом мы провели 100 экспериментов на неповрежденных конечностях трупов практически здоровых людей, умерших насильственной смертью. Ряд опытов был проведен на конечностях, покрытых одеждой.
Экспериментальные переломы вызывались воздействием разнообразных по форме твердых предметов, удары которыми наносились при различных положениях трупов, в частности при наличии твердой подкладки под конечностью. Учитывались энергия удара, направление и угол действия силы.
Нарушение кости изучалось на месте, затем часть кости, где локализовалось повреждение, выпиливали, освобождали от мягких тканей и изучали дополнительно.
Результаты экспериментов показали, что при ударе твердым тупым предметом по неповрежденной конечности под углом 75—90° к продольной оси кости целость ее нарушается в месте удара с образованием безоскольчатых или оскольчатых переломов.
Мы не отметили влияния формы ударяющего предмета на характер перелома, что, вероятно, можно объяснить наличием мягких тканей (а в ряде экспериментов — и одежды) на конечности, которые как бы
«сглаживают» неровную поверхность предмета, наносящего травму.
Линия (или плоскость) перелома при такогорода повреждениях костей отличается рядом особенностей. В месте приложения силы линия перелома имеет крупнозубчатый характер, на противоположной стороне — мелкозубчатый.
Направление этой линии, как правило, поперечное. На боковых — от места приложения силы — сторонах она идет в косом направлении.
Во всех случаях переломов длинных трубчатых костей, возникших от удара твердым тупым предметом под углом 75—90° к продольной оси кости, были обнаружены трещины компактного вещества кости. Эти трещины отходили от линии перелома на боковых (по отношению к пункту приложения силы) сторонах и образовывали с линией перелома веерообразно расположенные углы, открытые к месту удара (рис. 1).
Если такие веерообразные трещины проходили через всю толщу компактного вещества кости и соединялись между собой, это приводило к образованию осколков.
Рис. 1. Безоскольчатый перелом бедренной кости. Веерообразные трещины на боковой от места удара стороне.
Стрелкой указаны направление и место удара.
Осколки, имеющие многоугольную (в профиль — треугольную) форму, всегда находились в месте приложения силы. Осколки же полулунной формы располагались, как правило, только на боковых (по отношению к месту удара) сторонах и образовывались за счет пересечения веерообразной трещины с линией перелома (рис. 2).
Рис. 2. Оскольчатый перелом плечевой кости. Стрелкой указаны направление и место приложения силы.
Указанные особенности переломов длинных трубчатых костей (характер зубчатости линии перелома, веерообразные трещины, локализация осколков и их форма), возникших от удара твердыми тупыми предметами, с достаточной четкостью выявлять при рентгеновском исследовании. Это позволило проверить данные наших экспериментов не только при судеономедицинских исследованиях трупов, но и в случаях освидетельствования живых лиц, перенесших травму длинных костей конечностей.
При экспертизе в случаях травмы длинных трубчатых костей твердыми тупыми предметами мы всегда обнаруживали все признаки, которые были выявлены при экспериментальных исследованиях, что позволяло устанавливать направление действия механической силы. Материалы дела, которые, как правило, мы получали после производства экспертиз, во всех случаях подтвердили наши заключения относительно условий возникновения повреждений, в частности о направлении действия механической силы. В качестве иллюстрации практического использования полученных нами данных приводим следующую экспертизу.
В апреле 1958 г. нам пришлось участвовать в экспертизе по поводу эксгумации трупа гр-на Н., 46 лет.
12/XI 1957 г. гр-н Н. был доставлен в бессознательном состоянии в больницу, где, не приходя в сознание, вскоре умер. Шофер, доставивший потерпевшего, на предварительном следствии показал, что он ехал на машине по шоссе и неожиданно увидед сидевшего на дороге человека с вытянутыми в сторону правой обочины дороги (по ходу машины) ногами. Шофер предпринял энергичную попытку свернуть вправо, но при этом, как ему показалось, он переехал через левую ногу сидевшего на дороге человека. Очевидцев происшествия не было.
При судебномедицинском исследовании трупа обнаружена ушибленная рана кожных покровов в правой теменной области; множественный перелом 12 ребер слева; разрыв левого легкого; левосторонний гемоторакс; оскольчатый перелом костей левой голени на -границе средней и нижней третей. Осколки располагались с наружной стороны; на передней и задней поверхностях большеберцовой и малоберцовой костей вее- робразные трещины, образующие с линией перелома углы, открытые кнаружи. На внутренней стороне линии переломов мелкозубчатые, идут в поперечном направлении; на наружной — крупнозубчатые.
Характер повреждения костей левой голени абсолютно исключал переезд через ногу при том положении потерпевшего, о котором говорил шофер.
Экспертной комиссией было дано заключение, что повреждения, обнаруженные при исследовании трупа, могли возникнуть от удара тупыми предметами, возможно, частями движущегося автотранспорта, слева, и не могли возникнуть при обстоятельствах, указанных шофером, доставившим пострадавшего в больницу.
Следствием было установлено, что покойный был сбит незадолго до этого проходившей встречной грузовой автомашиной.
Наши экспериментальные данные и практические наблюдения позволяют считать, что в случаях травмы длинных трубчатых костей представляется возможным при учете других повреждений судить о направлении действия внешнего насилия — удара тупым твердым предметом: 1) в пункте приложения силы осколок кости имеет многоугольную форму, линия перелома — выраженную зубчатость; 2) на стороне, противоположной месту удара, линия перелома имеет мелкозубчатый характер и идет в поперечном направлении; 3) на боковых по отношению к месту удара сторонах возникают трещины компактного вещества кости, образующие с линей перелома углы, открытые к месту приложения силы, а также осколки полулунной формы.
Источник
11.05.2020
Осложнения при накостном остеосинтезе у больных с переломами длинных трубчатых костей
Применение биоактивных имплантатов позволило сократить уровень неудовлетворительных результатов в 2 раза.
Использование пластин с КФ покрытием целесообразно при переломах типа С и у больных на фоне остеопороза.
ВВЕДЕНИЕ
Неоспоримые достоинства накостного остеосинтеза, благодаря возможности проведения точной репозиции отломков, жесткости фиксации, ставят его в число ведущих методов хирургического лечения переломов длинных трубчатых костей. Но даже технически грамотно выполненная операция качественным имплантатом не всегда предотвращает миграцию винтов или перелом пластины, а удовлетворительный исход лечения не гарантирован при консолидации в правильном положении [2, 3]. Совершенствование технологии остеосинтеза не позволяет избежать неудовлетворительных результатов, которые наблюдаются, по данным разных авторов, у 35-70 % оперированных больных [4, 9, 13].
В связи с этим, в качестве альтернативы стальным и титановым изделиям во всем мире проводятся работы по созданию биологически активных и биологически инертных материалов нового поколения [12]. На сегодняшний день у специалистов нет сомнения в том факте, что стабильность костных отломков напрямую связана с возможностью интеграции поверхности имплантируемой конструкции с костной тканью. Известно, что лучшую фиксацию обеспечивают пористые поверхности, содержащие в своем составе кальций-фосфатные (КФ) соединения [7].
Однако клинических исследований применения КФ покрытий на титановых имплантатах с анализом осложнений у больных со сходными травматическими повреждениями в доступных литературных источниках мы не нашли.
Цель исследования: проанализировать осложнения при накостном остеосинтезе биоинертными и биоактивными
конструкциями и разработать пути снижения их числа.
МАТЕРИАЛЫ И МЕТОДЫ
Работа основана на анализе оперативного лечения 1265 больных в травматологическом отделении ММЛПУ ГБ N1 города Томска, обоего пола, средний возраст которых составил 37,1±6,5 года, с закрытыми переломами бедренной (n=440), большеберцовой (n=532) и плечевой (293) костей. Переломы типа С со-ставили 44,7 %, В – 29,2 %, А – 26,1 %.Для накостного остеосинтеза использованы пла-стины DSP, разработанные в КНПО «Биотехника» совместно с Томским политехническим университетом.
Формирование КФ покрытия на титановых пластинах осуществлялось методом анодно-искрового оксидирования в электроимпульсном режиме в электролите из фосфорной кислоты [5].
Больные с переломами длинных трубчатых костей в зависимости от типа примененного имплантата для операции были разделены на две группы (табл. 1).
Остеосинтез у первой группы, состоящей из 672 пациентов, проводили биоинертными пластинами (БИП), у второй – 593 пострадавших — биоактивными (БАП), с КФ покрытием. Критериями включения являлись информированное согласие больных, закрытый перелом длинной трубчатой кости, показания для накостного остеосинтеза пластиной.
Из исследования исключались пациенты с политравмой, применением в качестве лечения аппарата внешней фиксации, имеющие противопоказания для операции накостными имплантатами. Состав обеих групп был однородным по возрасту, полу, количеству и характеру полученных повреждений. Распределение больных по группам носило случайный характер. Для анализа полученных осложнений были взяты случаи сращения перелома с грубой деформацией, контрактурами суставов, замедленными сращениями и формированием ложного сустава, переломом и смещением металлоконструкции, нагноениями мягких тканей с переходом в остеомиелит.
Обработку полученных при исследовании данных проводили с использованием программ Statistica 6,0 и SPSS 12,0.
Для описания качественных данных использовали абсолютные и относительные частоты. Сравнение качественных данных проводили критериями Фишера и Хи-квадрата с учетом условий их применения. Уровень статистически значимого различия считали при p<0,05.
РЕЗУЛЬТАТЫ
Полностью устранить смещения костных фрагментов во время операции не удалось у 27 (2,1 %) пострадавших. Это было связано не только с тяжестью травмы, сопутствующим остеопорозом, но и с техническими трудностями при проведении остеосинтеза.
Частыми неудовлетворительными результатами являлись стойкие контрактуры суставов. Они составили 8,6 % в группе больных с БАП и 15,8 % с БИП (табл. 2).
К ограничению подвижности приводили тяжелые внутрисуставные переломы, замедленная консолидация, позднее начало и невозможность заниматься восстановительным лечением, особенно у пожилых больных и лиц с излишним весом. На отдаленный результат лечения оказывало влияние ограниченное число реабилитационных центров, недостаточная преемственность работы стационара и амбулаторно-поликлинической сети. Из всех перечисленных факторов на функцию сустава наибольшее влияние оказывала тяжесть повреждения суставного отдела.
Общеизвестно, что внутрисуставные гематомы, кровоизлияния и отеки параартикулярных тканей, сопровождающие внутрисуставные или околосуставные переломы, являются пусковыми механизмами, приводящими к развитию посттравматической контрактуры и артроза [10, 11].
КФ покрытие, стимулируя значительный рост костной ткани вдоль пластины, формировало выраженную периостальную мозоль. Благодаря высокой биомеханической совместимости материала в области перелома исключались негативные реакции, происходящие на границе имплантат-кость.
Кроме того, данное покрытие, обеспечивая интеграционное взаимодействие КФ структуры пластины с костной тканью, существенно повышало прочность закрепления ее на кости [5, 7]. После операции с использованием БАП уменьшалась необходимость длительного назначения обезболивающих препаратов, появлялась возможность оказаться от дополнительной внешней иммобилизации и начать раннюю реабилитацию без риска возникновения вторичного смещения костных отломков или миграции конструкции. В ранние сроки наблюдения (до 6 месяцев) остеосинтез пластинами с КФ покрытиями приводил к полной консолидации переломов, достоверному уменьшению нейроваскулярных нарушений, болевого синдрома, улучшению подвижности в смежных суставах. Избыточную гетеротопическую оссификацию при внутрисуставных переломах можно было предотвратить при удалении металлоконструкций после сращения перелома (через 1-1,5 года после операции).
Замедленную консолидацию и формирование псевдоартроза чаще встречали при диафизарных повреждениях голени типа С (табл. 3), что согласуется с результатами других авторов [1, 6]. Основной причиной этих процессов у 11,0 % больных, оперированных пластинами с БИП и 5,1 % с БАП, явилась недостаточная адаптация костных отломков с наличием щели между фрагментами и неустраненным костным дефектом.
Полноценную регенерацию задерживало нарушение кровоснабжения поврежденного сегмента конечности вследствие обширной отслойки надкостницы, вызванной как самой травмой, так и неадекватной оперативной техникой, нестабильность остеосинтеза и развитие инфекции.
Наиболее важными факторами, помогающими избежать излишней травматизации при лечении переломов, является использование современных технологий остеосинтеза (пластины LSP, LS-LSP, LISS, штифты с блокированием) и малотравматичная техника операции.
Потеря стабильности была обусловлена механическим повреждением пластины при ранней функциональной нагрузке или уменьшением прочности костной ткани вследствие остеопороза (рис.1, 2).
Снизить число осложнений, таких как перелом металлоконструкции, возможно при использовании стальных пластин, покрытых гибридным КФ слоем, обладающих наряду с высокими механическими характеристиками хорошей биосовместимостью с костью.
Замедленная консолидация перелома сопровождалась болезненностью в области повреждения при пальпации и осевой нагрузке, отеком мягких тканей и синюшным оттенком кожи конечности. Определяющие диагностические критерии такого состояния были получены с помощью лучевых методов исследования. Всего такие осложнения отмечены у 104 (8,2 %) пациентов. Накостная пластина, перекрывая область перелома на значительном протяжении, не позволяла полностью оценить состояние костной мозоли.
Дополнительную информацию о темпах репаративных процессов мы получали с помощью ультразвукового исследования области перелома. Физические основы метода позволяют увидеть процесс формирования костной мозоли еще до появления ее кальцинации, что значительно дополняет стандартное рентгенологическое обследование. Эхографическая картина характеризовалась уменьшением диастаза между отломками и глубины щели перелома с увеличением количества тонких линейных эхопозитивных включений, продольно ориентированных по оси конечности. Возможность проведения ультразвукового мониторирования в условиях экономической доступности, быстроты процедуры, неинвазивности и отсутствия лучевой нагрузки делают это исследование незаменимым при контроле костной прочности при лечении переломов длинных трубчатых костей.
При остеосинтезе металлоконструкциями с БИП несращение перелома отмечено у 15 (2,2 %) человек. Этим пострадавшим приходилось выполнять повторные операции. Использование пластин с БАП позволило снизить количество этих осложнений до 4 (0,7%) случаев. Проведение комплексного обследования с применением ультразвукового исследования помогало в ранней диагностике формирования псевдоартроза и своевременном осуществлении коррекции лечения.
Инфекционные осложнения с переходом в посттравматический остеомиелит вносили серьезные трудности в процесс лечения и значительно увеличивали его продолжительность. Под нашим наблюдением находилось 17 таких больных, 11 (1,6 %) при использовании биоинертных имплантантов и 6 (1 %) – с КФ покрытием. При невозможности ликвидировать гнойный процесс, используя проточное промывание очага воспаления и массивную антибактериальную терапию, мы производили удаление металлоконструкции, расширенную некрэктомию с наложением аппарата внешней фиксации.
В своей практике мы наблюдали ряд больных, имеющих несколько проблем в послеоперационном периоде.
Замедленная консолидация часто сочеталась с контрактурой суставов. Перелом и миграция пластины приводили к ложному суставу и нередко — к нагноению мягких тканей и остеомиелиту. Своевременная коррекция лечения, улучшение преемственности работы стационара и поликлиники помогали повлиять на эту отрицательную статистику.
Оценивая результаты лечения двух групп пострадавших, можно сказать, что хороший клинический результат достигнут у 75,2 % с применением пластин с БАП и 61,2 % с БИП. Неудовлетворительные исходы составили 5,9 % и 14,0 % соответственно. Биоактивные имплантаты с КФ покрытием показали свою эффективность при переломах типа С, а также и у больных на фоне остеопороза. При их использовании удалось значительно сократить случаи нестабильности остеосинтеза после операции, несращений перелома, а также начать раньше активное восстановительное лечение.
ВЫВОДЫ
При накостном остеосинтезе самыми частыми осложнениями явились стойкие контрактуры суставов (15,8 %), замедленная консолидация переломов (11,0 %).Применение биоактивных титановых пластин с КФ покрытием позволило получить более хороший клинический эффект по сравнению с биоинертными имплантатами, снижая уровень неудовлетворительных результатов в виде формирования контрактур до 8,6 %, замедленного сращения переломов до 5,1 % и ложных суставов в 3 раза.
Сократить случаи перелома конструкций с сохранением хорошей биоинтеграции с костью возможно при внедрении стальных имплантатов с нанесенным на них КФ слоем, обладающих более высокими механическими характеристиками по сравнению с титаном.
Уменьшить осложнения остеосинтеза поможет использование современных технологий и минимально инвазивной техники операции, всесторонний контроль процесса консолидации, адекватная и правильная тактика реабилитации больных.
ЛИТЕРАТУРА
1.Барабаш А.П., Шпиняк С.П., Барабаш Ю.А. Сравнительная характеристика методов остеосинтеза у пациентов с оскольчатыми переломами диафиза бедренной кости. // Травматология и ортопедия России. 2013. No 2. С. 116-124.
2.Разрушение имплантатов при накостном остоесинтезе переломов длинных костей / A.В. Бондаренко, Е.А. Распопова, В.А. Пелеганчук, С.А. Печенин // Вестн. травматологии и ортопедии им. Н.Н. Приорова. 2004. No 2. С. 41-44.
3.Волна A.A., Владыкин А.Б. Переломы проксимального отдела плеча: возможность использования штифтов // Margo Anterior. 2001. No 5 — 6. С. 1-4.
4.Набоков А.Ю. Современный остеосинтез. М.: Изд-во Медицинское информационное агентство, 2007. 400 с.
Nabokov A.Iu. Sovremennyi osteosintez [Modern osteosynthesis]. M.: Izd-vo Meditsinskoe informatsionnoe agentstvo, 2007. 400 s.
5.Биоматериалы и имплантаты для травматологии и ортопедии / Т.С. Петровская, В.П. Шахов, В.И Верещагин, В.П. Игнатов. Томск: Изд-во Томского политехнического университета, 2011. 307 с.
6.Оценка результатов лечения различных типов диафизарных переломов костей голени при накостном и внутрикостном остеосинтезе / В.В. Писарев, А.В. Алейников, И.В Васин, Ю.А. Ошурков // Травматология и ортопедия России. 2013. No 3. С. 29-36.
7.Родионов И.В., Анников В.В. Исследование и разработка металллооксидных биосовместимых покрытий для медицинского применения // Новые технологии создания и применения биокерамики в восстановительной медицине: материалы междунар. науч.-практ. конф. Томск, 2010. С. 137-143.
8.Хэнч Л., Джонс Д. Биоматериалы, искусственные органы и инжиниринг тканей. М.: Техносфера, 2007. 304 с.
Khench L., Dzhons D. Biomaterialy, iskusstvennye organy i inzhiniring tkanei [Biomaterials, artificial organs, and tissueengineering]. M.: Tekhnosfera, 2007. 304 s.
9.Ульянов A.B., Зоря В.И., Щукин В.Н. Накостный компрессионно-динамический остеосинтез костей конечностей // Паллиативная медицина и реабилитация. 2002. No 2-3. С. 107.
10.Choi P.D., Melikian R., Skaggs D.L. Risk factors for vascular repair and compartment syndrome in the pulseless supracondylar humerus fracture in children // J. Pediatr. Orthop. 2010. Vol. 30, No 1. P. 50-56.
11.Prevention and treatment of elbow stiffness / P.J. Evans, S. Nandi, S. Maschke, H.A. Hoyen, J.N. Lawton // J. Hand Surg. Am. 2009.Vol. 34, No 4. P.769-778.
12.Evaluation by bone scintigraphy of osteogenic activity of commercial bioceramics (porous beta-TCP and HAp particles) subcutaneously implanted in rats / H. Nakayama, T. Kawase, H. Kogami, K. Okuda, H. Inoue, T. Oda, K. Hayama, M. Tsuchimochi, L.F. Wolff // J. Biomater. Appl. 2010. Vol. 24, No 8. P. 751-768.
13.Nork S.E. Femoral shaft fractures. In: Rockwood and Green’s Fractures in Adults / Eds.: R.W. Buchholz, J.D. Heckman, C.M. Court-Brown, P. Tornetta. 7th ed. Philadelphia: Lippincott Williams & Wilkins, 2010. P. 1655-1719.
Сведения об авторах:
1.Попов Владимир Петрович – ГОУВПО СибГМУ, г. Томск, кафедра травматологии, ортопедии и ВПХ, ассистент, к. м. н.;
2.Здрелько Валерий Петрович – Больница скорой медицинской помощи, г. Томск, врач-ординатор, отделение травматологии.
3.Трухачев Игорь Геннадьевич – Больница скорой медицинской помощи, г. Томск, врач-ординатор, отделение травматологии.
4.Попов Александр Владимирович – Городская больница скорой медицинской помощи, г Томск, врач-ординатор, отделение травматологии.
Теги: остеосинтез
234567
Начало активности (дата): 11.05.2020 19:48:00
234567
Кем создан (ID): 989
234567
Ключевые слова:
остеосинтез, переломы, биоинертные и биоактивные имплантаты, замедленная консолидация, псевдоартроз, контрактуры
12354567899
Источник